SYLLABUS PHYS 4310

Quantum Mechanics, Spring 2023

Dr. Yuri RostovtsevLecture: MWF 10:00 - 10:50 AMOffice: GAB 525IPhysics Building Room 311Recitation: MW 3:00-3:50 P.M., Phys 115Phone: 565-3281Email: rost@unt.edu,Phone: 565-3281Required Text: "Introduction to Quantum Mechanics", by David J. Griffiths, 2nd edition.Office Hours: M 2:00 -3:00 PM and by appointment

Course Content:

Fundamentals of quantum theory; foundations of wave mechanics; Schroedinger's formulation of non-relativistic single-particle quantum mechanics and application to simple systems; Schrödinger equation, one-dimensional problems, operators and eigenfunctions, threedimensional problems, angular momentum, and spin. Origins of the modern theory of atomic structure; the one electron atom.

We will cover material in Chapters 1-4 and 12 of the book including the wave equation, timeindependent Schrodinger equation, linear algebra, Hilbert space formalism, and the EPR paradox.

Note: Not all the material in these chapters will be covered and additional material not in these chapters will be covered.

Exams: Exams are scheduled during class. **Homework:** Weekly homework is required to be submitted online. **Make-up:** No make-up exams

Grading:

Exam I, Exam II, Exam III 15 %, 15%, 15% Homework 15 % Comprehensive final exam 40 % Bonus problems <u>100%</u> (A: 90-100; B: 80-89; C: 70-79; D: 60-69; F: less than 60)

The University of North Texas, Department of Physics will make reasonable adjustments to ensure equal opportunity for people with disabilities to participate in all its programs and activities. If special accommodations are required, please see the instructor.

Tentative Lecture and Exam Schedule

Session	Date	Day	Chapter: Lecture Topic
1 2	18 Jan. 20 Jan.	We Fr	Ch. 1: Schrodinger equation Ch. 1: Schrodinger equation
3 4 5	23 Jan. 25 Jan. 27 Jan.	Mo We Fr	Ch. 1: Expectation values Ch. 1: Hamiltonian Ch. 1: Hamiltonian
6 7 8	 30 Jan. 1 Feb. 3 Feb. 	Mo We Fr	Ch. 2: Time-independent Schrodinger equationCh. 2: Particle in an infinite wellCh. 2: Particle in an infinite well
9 10 11	6 Feb. 8 Feb. 10 Feb.	Mo We Fr	Ch. 2: Harmonic oscillatorCh. 2: Algebraic solutionCh. 2: Raising and lowering operators
XM1	10 Feb.	Exam	n 1—Chs. 1, 2
12 13 14 15 16 17 18 19 20 21 22 23	 Feb. Feb. Feb. Feb. Feb. Feb. Feb. Mar. 	Mo We Fr Mo We Fr Mo We Fr	 Ch. 2: Ground state wave function Ch. 2: Analytic method Ch. 2: Free particle Ch. 2: Delta function potential Appendix: Vectors Appendix: Inner products Appendix: Matrices Appendix: Changing bases Appendix: Eigenvectors and eigenvalues Appendix: Hermitian transformations Ch. 3: Hilbert space Ch. 3: Hermitian operators
XM2	10 Mar.	Exam 2—Chs. 1, 2, 3	
 24	13 Mar. 15 Mar. 17 Mar. 20 Mar.	Mo We Fr Mo	No class – Spring Break No class – Spring Break No class – Spring Break Ch. 3: Uncertainty principle
25 26	22 Mar. 24 Mar.	We Fr	Ch. 3: Energy-time uncertainty Ch. 3: Dirac notation

27	27 Mar.	Mo	Ch. 3:	Dirac notation
28	29 Mar.	We	Ch. 3:	Examples
29	31 Mar.	Fr	Ch. 3:	Examples
30	3 Apr.	Mo	Ch. 3:	Further examples of formalism
31	5 Apr.	We	Ch. 4:	Schrodinger equation in spherical coordinates
32	7 Apr.	Fr	Ch. 4:	Bessel functions
33	10 Apr.	Mo	Ch. 4:	The hydrogen atom
34	12 Apr.	We	Ch. 4:	Spherical Harmonics
35	14 Apr.	Fr	Ch. 4:	Angular momentum
XM3	14 Apr.	Exan	n 3—Chs.	1, 2, 3, 4
36	17 Apr.	Mo	Ch. 4:	Angular Momentum
37	19 Apr.	We	Ch. 4:	Addition of Angular Momentum
38	21 Apr.	Fr	Ch. 4:	Spin
39	24 Apr.	Mo	Ch. 12:	The EPR paradox
40	26 Apr.	We	Ch. 12:	The No-Clone Theorem
41	28 Apr.	Fr	Ch. 12:	The Quantum Zeno paradox
42	1 May	Mo	Ch. 12:	Entanglement
43	3 May		Ch. 12:	Quantum computation
ΤJ	5 iviay	** C	CII. 12.	Quantum computation
FINAL				

The University of North Texas is on record as being committed to both the spirit and letter of federal equal opportunity legislation; reference Public Law 92-112 – The Rehabilitation Act of 1973 as amended. With the passage of new federal legislation entitled Americans with Disabilities Act (ADA), pursuant to section 504 of the Rehabilitation Act, there is renewed focus on providing this population with the same opportunities enjoyed by all citizens.

UNT's policy on Academic Dishonesty can be found at: <u>http://www.vpaa.unt.edu/academic-</u> <u>integrity.htm</u>

Drop information is available in the schedule of classes at: http://essc.unt.edu/registrar/schedule/scheduleclass.html

NOTICE: SETE (Student Evaluation of Teaching Effectiveness):

The Student Evaluation of Teaching Effectiveness (SETE) is a requirement for all organized classes at UNT. This short survey will be made available to you at the end of the semester and will remain open through the week of finals, providing you a chance to comment on how this class is taught. I consider the SETE to be an important part of your participation in this class.